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Axisymmetric Stokes flows due to a rotlet or stokeslet 
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The axially symmetric Stokes-flow problems occurring when a point source, rotlet or 
stokeslet is situated along the axis through the centre of a circular hole in a solid 
plane wall are examined. Exact solutions of the governing equations are obtained in 
terms of toroidal coordinates and their use in modelling the flows caused by a small 
particle translating and rotating near to a filter pore is considered. First-order expres- 
sions are derived for the effects of the wall and hole upon the hydrodynamic force and 
torque on the particle for situations in which the particle dimensions are small in 
comparison with its distance from the solid portion of the plane wall. The resulting 
expressions apply to any centrally symmetric particle, not necessarily axisymmetric. 
Finally, expressions are derived for the motion of a neutrally buoyant sphere sus- 
pended in a flow through a hole. It is demonstrated that such a particle will generally 
migrate across the streamlines of the undisturbed flow - away from or towards the 
symmetry axis of the flow, according as the particle is approaching or receding from 
the hole. Such migratory motion may be of importance in the flow of suspensions 
through orifices and stenoses. 

1. Introduction 
A problem of considerable importance in filtration flows is the manner in which the 

suspended particles interact hydrodynamically with the pore geometry. One way of 
modelling the interaction between a single particle and a single pore is to regard the 
filter as an infinitesimally thin plane wall pierced by a small circular hole connecting 
semi-infinite regions of fluid on either side of it  (figure l) ,  and to represent the sus- 
pended particle as a small rigid body, typically a sphere. We shall regard the Reynolds 
number based upon the particle or hole size as being small. The problem is then one 
of finding the Stokes resistance of the particle as it moves in the proximity of the hole 
in the wall. 

However, even with such simplifications in the poreparticle geometry and flow, 
the hydrodynamic problem posed is still one of immense difficulty, seemingly in- 
tractible of mathematical solution. A further simplification which can be made is to 
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FIGURE 1. An axially symmetric particle translating or rotaking relative to an axis lying normal 
to the plane of the wall and passing through the centre of the hole. The direction of the couple L 
arising from the rotation, or drag force F arising from the translation, is aa indicated. 

regard the particle as a point force (stokeslet) or point couple (rotlet). This approxi- 
mation is sensible if the maximum linear particle dimension is small compared with 
the distance of the particle from the nearest solid portion of the wall. 

In this paper, consideration is given to the axially symmetric flow problems occur- 
ring when a point source, rotlet or stokeslet is situated along the axis through the 
centre of the hole perpendicular to its plane. The problems then posed are capable of 
exact mathematical solution and are not without interest since each requires a different 
mode of solution. For each of these problems, it has been found advantageous to work 
with toroidal coordinates, since within this coordinate system, the hole and the plane 
less the hole are both members of the same family of level surfaces. The source and 
rotlet problems are Dirichlet boundary-value problems for the Laplece equation and 
modified Laplace equation respectively. Both can be solved directly using Fourier- 
Mehler transforms or alternatively can be solved as mixed boundary-value problems 
leading to the solution of dual integral equations. 

The stokeslet problem is quite different. Although axial symmetry implies the 
existence of a Stokes stream function, i t  is surprisingly found that this cannot be 
expressed in the form of separated variables of the coordinate system. The method of 
solution is to set up boundary-value problems for the velocity and pressure fields 
which in turn can be expressed in terms of two scalar functions. An additional difficulty 
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with this problem is that the value taken by the stream function on the plane, which 
is proportional to the flux of fluid through the hole, is an unknown of the problem. 
The method of solution employed in this paper bypasses this difficulty, and the flux 
of the fluid through the hole can be expressed as a simple function of the distance of 
the stokeslet from the plane. The reflected velocity at the point occupied by the 
stokeslet can also be found in a simple form, and this information utilized to compute 
the wall effect upon the drag force experienced by a small particle translating normal 
to the hole. This force has the property that it possesses a maximum value when the 
particle is of the order of one hole radius from the plane. Thus, a small particle moving 
through an otherwise quiescent fluid towards the pore of a filter experiences its greatest 
drag before reaching the plane of the filter pore. Furthermore, it is shown that for all 
positions of the stokeslet along the axis of symmetry, the force exerted by the stokeslet 
on the fluid is the same as the force exerted by the fluid on the plane, and this is a 
constant value independent of the distance of the stokeslet from the plane. 

It has been established that the flux of fluid passing through the hole when a 
stokeslet is placed on the axis of symmetry is a non-zero quantity. This means that 
the flow cannot be the limit of a flow due to a stokeslet in the presence of a plane 
attached to a spherical bowl, where necessarily the flux through the plane is zero, 
giving rise to reversed flow. The solution of this problem is presented in an appendix. 

2. The basic formulae 

cylindrical polar co-ordinates (p, w, z )  by the equations 
Let toroidal coordinates ( [ , r ] ,  w )  be defined (Happel & Brenner 1973) in terms of 

z = sin r ] / (  cosh E - cos r ] ) ,  p = sinh [/(cash E - cos 7). (2.1) 

For convenience the variables (p ,z )  have been made dimensionless with the hole 
radius. Later on, in $4, we shall revert to the physical (dimensional) variables (p’, 2’). 

The special circle is given by p = 1, z = 0, IwI < n and is the boundary of both the 
unit disk r] = r, 6 B 0 and the coincident plane surfaces r] = 0 or 2n, 6 3 0. All of the 
solutions sought here are independent of the meridional angle w .  

A solution of Laplace’s equation, which is bounded everywhere, has the form 

where K ,  = 

A solution of 
is a Mehler cone1 function, with P, the Legendre function of order v. 

QBW-PP-~W = 0, (2.3) 

which is bounded everywhere, is similarly of the form 

where K:(cosh[) = sinhEK:(cosh[). Formulae (2.2), (2.4) are given by Schneider, 
O’Neill & Brenner (1973). It may appear from the differential equations (2.3) and 
Vz$ = 0 that any # of the form (2.2) will be such that @/ap can be written in the 
form (2.4). However this is not so, owing to unboundedness as [ + 00. 
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A solution of the fourth-order equation, 

which is bounded everywhere, has, according to Payne & Pel1 (1960), the form 

where F is a linear combination of the four functions ooshsqcosq, coshsqsinq, 
sinh sq cos q, sinh sq sin q. 

In  terms of 6 and q, the square of the distance between the points @, z) and (0, zo), 
with zo = cot +qo, is given by 

but it is not possible to express (coshh+cosq,)-* in terms of an integral involving 
Ki(cosh5). One has to manage with a difference of such functions obtained by integrat- 
ing (2.8) with respect to qo, viz. 

(2.9) (cosh E + cos q,)-* - (cosh 5 + cos q2)-* 

where we also have the restriction lqll, lq21 < n. 

3. The source and rotlet 
Suppose that q5 satisfies Laplace’s equation, has a source singularity at (p = 0, z = zo) 

where zo > 0, and takes given values at q = 0,27r. Then q5 can be written as the sum 
of the solution in the absence of the source and a solution $which vanishes at  q = 0,2n. 
Thus 

$ =  - [pa  + ( z - z ~ ) ~ ] - * +  J2s in~qo(cosh~-cosq)~  A(s)  coshs(lr-q)K,(coshE)ds, 

(3.1) 

since the additional term is obviously even in (n -7). From (2.6), the vanishing of $ 
a t  q = 0,2n requires that 

42lom A(s)  coshsnKS(cosh5)ds = (cosh[-cosqo)-* 

and hence, using (2.7), 
A(s)  = coshs(p-q0)/cosh28n. 
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The Neumann problem for 9 can be treated in a similar manner to the above Dirichlet 
problem. 

Now suppose that w satisfies (2.3), has a rotlet singularity at (p = 0 , z  = zo) and 
vanishes at 7 = 0,27r. Then 

w = p [p2 + (Z - z J ' ] ~  + 242 eins &vo(cosh 5 - cos v)* A(s) Gosh ~ ( n  - 7 )  Kl,(cosh 6)  ds ,  

(3.3) 
j0" 

and the boundary condition shows, using (2.8), that A(s)  is again given by (3.2). 
These problems can also be solved as mixed boundary value problems. Writing 

the conditions which determine B ( k )  are that $ = 0 a t  z = 0 , p  > 1 whilst a$/& is 
continuous at z = 0 , p  < 1. Thus the following pair of dual integral equations is 
obtained : 

/o"Jo(kp)B(k)dk = (p2+z;)-* (p > I), 

lom IcJ,(kp) B ( k )  dk = 0 (p < 1). 

Using the formulae (Sneddon 1966) 

and defining B(s)  to be the Fourier sine transform of B ( k ) ,  viz. 

&(a) = lo" B ( k )  sin ks dk, 

(3.5) can be written as 

(3.5) 

whence, by a standard result, again given by Sneddon (1966), 

Meanwhile, (3.6) can be written as 

whence B(s)  = constant, (s < 1). On substitution of these expressions for B(8) in (3.6), 
it  emerges that the constant must be zero. Thus (3.4) becomes 

7 FLY I03 
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Similarly, writing the velocity in the rotlet problem as 
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m 
w = plp2 + (2 - z~)~]+ +I e-klEIJl(kp) k-lC(k) dk (3.10) 

and defining e(s) to be the Fourier sine transform of C ( k ) ,  the boundary conditions 
imply that 

0 

^ "  

~ I o ~ o m k - 1 J , ( k p ) 6 ( s ) s i n k s d s d k  = -p (p2+~; ) -8  (p > 1) (3.11) 

and 

But 
6(s) = 0 (5 < 1). 

jomJl(kp)k-lsinksdk = 1; dtlomJ,(kp) cos kt dk 

1 
P 

= - {s - H(s - p )  (s2 -pap) ,  

where H denotes the Heaviside unit function. Substituting this into (3.11) and 
applying the operator p-l a/+ to p times that equation, it follows that 

whence 

_ -  (9 > 1). 
2 3u2 + 

But since 

/omJl(kp)sinksdk = sH(p-s)/p(p2-s2)*,  

it follows that an arbitrary multiple of sink can be added to C ( k )  without affecting 
the condition Iom Jl(kp) C(k )  dk = 0 (p  > 1). 

The sine transform of sin k is ins( 1 - s) and hence, with C, a constant to be determined, 

Thus 

The condition (3.11) now implies that 

co = - 2/(2t+ 1)2, 

and another integration by parts enables (3.10) to be written as 

W =  P + !! j m  e-klzIJl(kp) ( dk (3.12) 
[p2+ (Z-z0)21+ 7r 0 ( z t+  1) 

= Pb2 + (2 - Z O ) * ] t  + Wl. 
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Note that, in agreement with the comments made in § 2, the expression for w in (3.12) 
is not the p-derivative of that for 4 in (3.9). 

A measure of the retarding effect of the rigid boundary upon the motion can be 
obtained by considering the angular velocity induced by the reflected field w1 at the 
rotlet. From (3.10), 

p) = iIOwJl(kp) C ( k )  dk 
P P - 0  

(3.13) 

Since, from (2.1), zo = cot iqo,  this expression is equivalent to that which can be ob- 
tained from (3.3), namely 

(3.14) 

The limit of this expression as the rotlet approaches the centre of the hole (qo + n) 
is -4/3n. 

If instead of having fluid in the region n < q < 2n, there is a free surface at q = n, 
then the condition aW/@ = 0 a t  q = n can be satisfied by adding to w(0 < q < n) an 
image rotlet and its corresponding reflected field wl, viz. 

w = P k  - z0l2 + P"1-8 + P [ ( Z  + zo)2 + Pal+ + w1(& 1 , q o )  + W1(5,7,27r - 701, 

where, evidently w,(& 7,227 - qo) = w1(& q,  qo). If alternatively the wall has no hole 
but is a solid plane, then only an image rotlet of opposite sense needs to be added. 
It readily follows that the torque factors far a sphere of radius a (< 1) are: 

1 + a3/SzS,, solid plane ; 

l -aSe ) (o ,m) ,  holeinwall; 

, free surface in wall ; (3.15) 

and are in arithmetic progression. These represent the amounts by which the torque 
L on the sphere is increased beyond the value L, that would obtain if the wall were 
absent and the sphere allowed to rotate with the same angular velocity. 

Equation (3.13) may be employed to determine the effect of the wall (and hole) 
upon the couple L required to maintain the symmetric rotation of a 'small ' axisym- 
metric particle for the configuration shown in figure 1. As a necessary preliminary we 
revert from the dimensionless variables employed thus far to comparable dimensional 
(physical) variables. Let c denote the hole radius, and define the physical variables 

pr = cp, zr = cz. (3.16) 
7-2 
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Denote by L, the couple required to maintain the symmetric rotation, with angular 
velocity R, of a body of revolution about its symmetry axis in an unbounded fluid of 
viscosity p. For example, for a sphere of radius a, L, = 87rp3R, while for a circular 
disk of radius a, L, = (32/3)pa3R. 

For a rotlet of couple strength L, in the unbounded fluid the physical (tangential) 
velocity component w' for a singularity situated at @' = 0, z' = 4) is (Brenner 19643) 

w' = wL,/87rpc3, (3.17) 

where w is the dimensionless velocity (cf. (3.12)) 

w = p[pa + (2 - Zo)a]f, (3.18) 

with z; = czo. Comparison of the preceding with the singular term in (3.12) shows 
that the 'reflected' physical field corresponding to the above singularity is 

w; = w1 L,/snpc3, (3.19) 

To terms of lowest order in all, the wall correction factor to the couple for the present 

L,/L = 1 - ( u ~ ) ~ / Q  + O(a/l)s,  (3.20) 

wherein a is the maximum linear dimension of the particle, and 1 is the minimum 
distance of a point in the particle from the nearest solid portion of the bounding wall. 
In  terms of characteristic distances, 

I = min (c, A )  (3.21) 

(3.22) 
where, as in figure 1, 

h = 2;. 
In (3.20), 

where the dimensionless field w1 is given by the second term of (3.12). 

axisymmetric configuration is (Brenner 1964 b) 

i a  
= - &limT--, (p'w;) 

o%nP aP 
(3.23) 

is half the magnitude of the reflected vorticityt vector evaluated at the centre of 
reaction (p' = 0,z' = 2;) of the particle. Introduction of (3.19) and (3.16) into (3.23) 
yields 

1 L, = --- 
2 87rpc3 [ t) 0 + (2) ,1 , 

wherein the subscript 0 connotes evaluation at the singularity (p = 0, z = zo). Since the 
reflected field w1 is necessarily analytic a t  all points of the fluid, and since w1 = 0 
everywhere along the symmetry axis p = 0, it readily follows that (awllap), = (wl/p)o. 
Hence, (3.20) reduces to . .  

L, -- - 1+- L, p) +o(;)'. L 87rpRc3 p 0 

With use of (3.13) this may be mitten as 

L, -- - 1-- W ( z ) + O ( y ,  L 87rpRc3 O O 

(3.24) 

(3.25) 

t Explicitly, 
W; = -2 .  &(V' x v;), with V: = GW;, 

A h A  in which (p, cp, z) are unit vectors in oylindricel polar co-ordinates. 
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FIGURE 2. Torque correction factor W, for use in (3.26). 

wherein 
Wo(Zo) = - 1 tan-lz, - (3zt-1)($+3)] 

& [ 2; 3z!(z: + 1)* 

is a non-dimensional function of the dimensionless ratio 

2, = h/c. 

(3.26) 

(3.27) 

Values of W ,  are plotted against zo in figure 2. 
By way of example, for a spherical particle of radius a the required couple L is 

-= L [ 1 - t)* E g Z , )  + 0 (y] -l. 8n,ua3SZ 
(3.28) 

The limiting case where c + 0 with h fixed (i.e., zo + 00) corresponds to rotation near 
a solid plane wall. Since tan-'00 = in, we have in this limit that N 1/82; = c3/8h3. 
Hence (3.28) becomes 

(3.29) 

This asymptotic result agrees with the leading term (Brenner 1964b), 

L / ~ ~ / U Z ' Q  = [ 1 - &(a/h)' - &a/h)* + O ( ~ / h ) l ~ ] ,  

of Jeffery's (1915) exact bipolar-coordinate solution for the symmetrical rotation of 
a sphere near a plane wall. Equation (3.29) also applies to the case where h/a 1 
with c fixed. That is, when the sphere is sufficiently far from the wall, the hole in the 
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wall appears to be nothing more than a pin hole, whence the couple on the sphere is 
the same as if the hole were totally absent. 

The opposite case where h -+ 0 with c fixed corresponds to the particle straddling 
the hole. Since Wo - 4/3n as zo --f 0, this makes 

(3.30) L/%T,uu'Q = [ 1 - (4/3n) (u/c)' + O ( U / C ) ~ ] - ~ .  

for a spherical particle. 

4. The stokeslet 
The velocity Vco) due to the stokeslet at (p = 0, z = zo) has components 

(4.1) 
v(o) = p ( z - 4  v(o) - 2 P2 

[pa  + (2 - zo)2]4 - + (2 - Z0)2]+' 

p'0) = 2/42 - zo) / [p2  + (2 - z0)2]9. 

z -  
[p2 + (2 - 2,)2]+' 

while the corresponding pressure p(0) is given by 

(4.2) 

The problem is to calculate the additional velocity field due to the presence of the wall 
with a hole and it is possible to do so in terms of harmonic functions. The appropriate 
representation of the total velocity field v is 

where 

with 

(4.3) 

(4.4a) 

$2) = z grad (ax/az)  - (ax /az )  2 + grad x, (4.4b) 

V2# = 0 = v=x. 
The total pressure field p is then given by 

p =pm+p(0)+2,U 

The condition that v vanish on the wall means that 

and 

Evidently q5 and x are both symmetric about the plane of the wall and have, as des- 
cribed in 8 2, solutions in terms of toroidal co-ordinates of the forms 

# = d:) = 2(p+Z; ) -~ -p~(p+z; )~  (2 = 0,p > 1) (4.5) 

ax/@ = -v(j), i.e. x = -zo(p2+z; )3  ( z  = 0 ,p  > I).  (4.6) 

Condition (4.6) means that the solution for E(s) is a constant multiple of A(s)  given 
by (3.2), the result being 

cash 8(n - qo) E(s)  = - 4 2  cos 470 
cosh2m * 

(4.9) 
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Meanwhile (4.6) impliea that 
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(coshl- l)*jom D(8) coshmK8(coshc)ds = 2 Pa 
(pa + Zt)* - (pa + z t p  ' 

Substituting (2.6) into the right-hand side and using (2.7) and its to derivative, it  
follows that 

D(s) = 1 / 2 ~ h i 7 ~ [ ( 2 - ~ i n ' & 7 ~ )  ~ o s h ~ ( ~ - ~ ~ ) - ~ S ~ ~ o S ~ 8 ( ~ - ~ o ) ] / ~ ~ ~ h a 8 ~  

(4.10) 

"he flux of fluid through the hole is given, from (4.3), by 

a 
= 2n sin iqo - 2( 1 + cos ?lo) - {m(sec ito - 1) - 2 tan *yo + ?lo} 

= 4sina47, 
a70  

4 

after substituting (4.7) and using the formulae 

q o d s  = i cosec +q0 - - "0 cosec iq0 cot i V 0 .  IOm coshasn 27T 47r 

An alternative approach is to use a stream function $ defined by 

up = p-ia$-/az, V, = -p- W P P .  (4.11) 

Then L21$ = 0 and if $ vanishes on the axis z = 0, it must be non zero on the wall, 
namely 

($)*=o = - M/2r = - 2 / 4 1  +z:). (4.12) 

This non-vanishing property makes it impossible to construct a solution for $ of the 
form (2.5). A way of circumventing this difficulty might be to use (2.5) to finda stream 
function vanishing on the wall, calculate the corresponding pressure difference A P  
between z + - a0 and z --f + 00 and add a suitable multiple of the solution given by 
Happel & Brenner (1973, 84.29) in terms of oblate spheroidal coordinates, for the 
pressure driven flow through a circular orifice. The idea, of course, is to cancel A P  and 

P > l  
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hence determine the unknown ‘flux ’ constant M .  However, the method is unsuccessful 
because, after much algebra, A P  is found to be zero. Further remarks on the physical 
significance of this fact are offered in 5. 

To examine the reason for this failure, consider the components of stream function 
corresponding to the velocity representation (4.3). Comparing (4.1 1) with (4.1) and 
(4.4) it  readily follows that 

= -pa[p 8 + ( Z  - 2,)2]-*, $-@I = zp ax/ap, 

but considerable manipulation of (4.7) is required for an expression for pl), which 
turns out to be 

where D(s)  is given by (4.10). These results verify that it was wrong to seek a solution 
of the form (2.5) for +, when there is a net flux of fluid through the orifice. This diffi- 
culty does not arise if the fluid on the opposite side from the stokeslet is of bounded 
extent, and the solution for the case when the boundary is q = n+q1(O < ql < n) is 
given in the appendix. It is of interest that the limit of this solution as ql + n cannot 
recover the solution given in this section. 

Having found integral expressions for the functions 4, x in the representation (4.4), 
the physical problem demands particular consideration of the ‘reflected velocity ’ at 
the stokeslet which, from (4.3), (4.4), is given by 

(4.13) 

Setting p = 0 (= 5)  in the subsequent calculation, it follows from (4.7), (4.10) that, 
since R,(l) = 1, 

D(s)  cash ~ ( n  - 7) as, 

W 

= ~ ( l - c o s q o ) ~  0 as 

x { (3 + cos qo) cosh s(m - 7,) - 2s sin qo sinh s(n - qo)}2/cosech2 m 

1 
= -( 1 - cos qo) { 3 + 6 cos q, + cos2 qo - & sin2 qo + lO[(n - qO)/sin so]} 
8n 

by evaluating the integrals. Also, from (4.8), (4.9): 
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It then follows that 
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-(zg) = -sinaqo ($) - -sinqo(l-cOsqo) 
e-eo 9=9Q 

sinaqo 7T-qo =- - 
47T (sinq, 

1 cot qo + + sin qo + cosec qo k K )  

On substituting these formulae into (4.13), it is seen that the reflected velocity at the 
stokeslet has magnitude V, given by 

(4.14) 

and direction opposite to that of the stokeslet. 

the stokeslet in isolation and let spherical polar coordinates by defined by 
Also of physical interest is the balance of forces acting on the fluid. Consider first 

z-z0  = rcose, p = rsine. 

v(:) = 2 cos elr,  v$) = - sin elr .  
Then, from (4.1), the radial and transverse velocity components are 

The normal stress Tg) is then given by 

while T$) vanishes identically. Hence the force exerted by the stokeslet on the fluid 
is 87~p in the positive z-direction. Evidently this is the force exerted on the remaining 
fluid by any mass of fluid containing the stokeslet. 

Now consider again the stokeslet in the presence of the hole in the plane. Since $, x 
are even functions of (q - n) and hence of z, the z-component of the force exerted by the 
fluid on the plane is evidently 

on substitution of (4.7). The x-integral is given by Schneider, O’Neill & Brenner (1973) 
and thus the double integral reduces to 

8J2 npIom D(s) cosh s7~  ds. 

When (4.10) is substituted into this integrand, the algebra becomes elementary and 
yields the value 8np. Thus it is found that for a11 positions of the stokeslet on the axis, 
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i.e. a11 z,, the force exerted by the stokeslet on the fluid is equal to the force exerted 
by the fluid on the plane. 

Since the force integral over the sphere at infinity is now zero, it appears that the 
leading terms, at large distance, of v(l) cancel do) in the representation (4.3). A simple 
examination of (4.7) for $readily shows this to be the case. At  large distances 5" + 72-f 0, 
whence 

Hence, on substituting in (4.3) and comparing with (4.1), it is seen that 

$1)- -9 as r + w .  

Equation (4.14) may be employed to determine the effect of the wall (and hole) 
upon the force F required to maintain the symmetric translation of a ' small ' axisym- 
metric particle for the configuration shown in figure 1. The technique (Sonshine, Cox 
& Brenner 1966) for obtaining the fist-order wall effect F/Fm for translation from the 
fundamental solution for a stokeslet is wholly analogous to that employed in $3 for 
determining the first-order wall effect L / L w  for rotation from the fundamental solu- 
tion for a rotlet. 

The physical velocity and pressure fields (v',p') for a point force of strength Fa 
situated a t  the point (p' = 0 , ~ '  = d)  in an unbounded fluid of viscosity ,u may be 
obtained from (4.1) and (4.2) by replacing (p ,  z )  by (p', z') as in (3.16), and multiplying 
by Fw/8n,u (Happel & Brenner 1973). Analogous to (3.20) the wall correction factor 
F/F,  for the force experienced by a particle translating with velocity U is (Sonshine 
etal. 1966) 

(4.15) 

where vi is the reflected velocity field. From (4.13) we obtain 

( 4 d O  = -v,Fw/8npc, 

with Q(7,) = Q(z,) the function defined in (4. la), in which zo = cot (7,/2) = h/c. This 
makes 

5 = 1 - V, F,/8n,ucU + O(U/Z)~, 
F 

(4.16) 

analogous to (3.25). Equation (4.14) may be expressed alternatively in terms of zo 
by noting that 

zo = cot (7,/2) = tan[(n-7,)/2], whence n-7, = 2 tan-'2,. 

Consequently, 

(4.17) 

By way of example, F, = 6npaU for a sphere of radius a and F", = 16paU for a 
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F I G D ~ ~ :  3. Force correction factor V, for use in (4.16). 

circular disk of radius a moving broadside on.? Thus, for the special case of a sphere, 
(4.16) becomes 

P / 6 n p U  = [l - ~ ( u / c )  V,(Z,) + O(a/Z)3]-1. (4.18) 

In  the limit where c -+ 0 (with h fixed) or h -+ co with c fixed, V, - 3/22, = 3c/2h. 
Therefore, (4.18) becomes 

F / 6 7 ~ p U  = [l -$(a/h) + O ( ~ / h ) ~ ] - l .  (4.19) 

This asymptotic result agrees with the leading term of Brenner’s (1961) exact bipolar 
coordinate solution for the translation of a sphere normal to a plane wall. 

Values of the wall-effect parameter V, are plotted as a function of z, = h/c in figure 3. 
Special values of interest are: at 2, = 0, V, = 2/n; at z, = 1, V, = 3/4; at z, = co, V, = 0.  
The function V, has two t h i n g  values, the obvious one at z, = 0 and a maximum when 
2, is slightly greater than unity. This behaviour accords with intuition. When the body 
is situated at large distances from the hole, the hole appears to be little more than a 
pinhole. Accordingly, the wall appears to be solid, whence the resistance of the particle 
increases monotonically as it moves toward the plane. On the other hand when the 
particle is near the plane its resistance necessarily decreases monotonically as it gets 
closer to the centre of the hole, since the effect of the 8oZid portion of the plane is 
necessarily diminished as the particle ‘ sees ’ more and more of the free expanse of the 

t Equation (4.16) is not limited to axisymmetric particles (Brenner 1962a, 19640; Cox & 
Brenner 1967). but may be applied to any centrally symmetria particle translating parallel to a 
principal axis of translational resistance along the normal to the plane of the wall containing the 
centre of the hole. Thus, for example, (4.16) may be applied to the case of a circular disk (of radius a) 
translating edge-on, for which Eb, = (32/3) p U .  This edge-on configuration does not correspond 
to an axisymmetric motion. 
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fluid on the other side of the hole. Thus, the existence of a maximum somewhere in 
the neighbourhood of zo z 1 appears entirely appropriate on physical grounds. 

5. Discussion 
As shown in $4, the translational motion of the particle gives rise to a net flux 

through the hole. In  physical variables the volumetric flow rate Q through the hole 
in the direction of z’ negative is related to the dimensionless flux parameter M via the 
expression 

Consequently, 
Q = (F,,~/8np) M .  

Faca 1 
2np c2+ ha’ 

Q=-- 

Alternatively, if = Q/nc2 is the mean velocity of flow through the hole, 

This velocity properly vanishes in the limit where either F,, = 0, c = 0, or h = 00. In 
the particular case of a spherical particle of radius a this mean velocity is 

V = U 3 a ~ / ( ~ 2 +  h2). (5.3) 

It is important to note that this represents the flow when the pressure at infinity in 
each chamber on either side of the hole has the same value, i.e. when AP = 0, where 

AP =P’ ( z ’+  -oo)-P’(z+ +a), (5.4) 

(cf. the remarks following (4.12)). This distinguishes the flux from that which obtains 
when a non-zero externally applied pressure difference AP is maintained across the 
hole, namely (Happel & Brenner 1973) 

q = APc8/3p, (6.5) 

the direction of net flow being in the direction of diminishing pressure. 
Since real experiments are invariably performed in bounded systems, there can be 

no net flow through the hole in such situations. Thus, putting IqI = 191 we find that 
the pressure is larger in that chamber from which the particle is absent than it is in 
the chamber containing the particle, this pressure difference being 

AP = 3Fm/2n(c2 + he). (5.6) 

The additional flow q across the hole from z’ c 0 to z’ > 0 caused by this pressure 
difference will exert an additional drag force on the particle above and beyond the 
force F given by (4.16). The additional force F+ may be calculated to terms of lowest 
order in all by means of Faxen’s law (Happel & Brenner 1973), which in present cir- 
cumstances adopts the form 

(6.7) 

where v t  is the physical velocity component in the z direction for the externally- 
driven flow through a circular hole in the wall, and 0 denotes evaluation a t  the point 
of the homogeneous fluid occupied by the centre of the particle. The error term of 
O(a/Z)s in (5.7) arises from our neglect of the pressure gradient term in Faxen’s law. 

F+ = F a ( ~ z ) o / U  + O ( ~ / 1 ) 8 .  
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FIGURE 4. Oblate spheroidal co-ordinates (A, 5) in a meridian F-.,ne, w = const. The sw_-ces of 
revolution h = const. are a confocal family of oblate hemispheroids having the z’ axis as their 
common axis of revolution. As indicated in the sketch the pair of hemispheroids & h define the 
surface of a complete spheroid. The focal circle of the confocal family lies in the plane z’ = 0 and 
corresponds to the value p’ = c. The spheroid h = 0 is degenerate, and corresponds to that portion, 
0 < p‘ < c, of the plane z’ = 0 lying within the focal cirole. The co-ordinate surfaces 6 = const. 
are a family of confocal hyperboloids of revolution of one sheet, having the z’ axis as their common 
axis of revolution. For g = 1 the hyperboloid degenerates into the line p‘ = 0, corresponding to 
the entire z’ axis ( - m < z’ c 00). The value 6 = 0 is also a degenerqte hyperboloid, corresponding 
t ,  t&at portion, c < p’ < 00, of the plane z’ = 0 external to the focal circle. Typical unit vectors 
( A ,  c )  me as shown in the sketch. The unit vector 6 is directed into the plane of the page. 

Happel & Brenner (1973, $4.29) give the stream function $+ and pressure field p +  
for flow in the positive z‘ direction through a circular hole in the wall a t  volumetric 
flow rate q as 

$+= --(l-P) 4 
271 

and 

p+ = const-- - + tan-’ A). 
7lcs 3pq( P+ga A (5 -9 )  

In these expressions ( ~ , A , w )  are a system of oblate spheroidal co-ordinates, right- 
handed in the order specified (figure 4). They are related to the cylindrical polar 
system (p’, w ,  2’) via, the expressions 

p’ = c ( P +  1)+ (I - C”€, 2‘ = cA(S, (5.10) 
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and span the range 0 < g < 1, - 00 < A < co. The circular hole corresponds to the value 
h = 0, the remainder of the plane z' = constant to [ = 0, and the positive and negative 
z' axes to [ = 1. Metrical coefficients for the system (Happel & Brenner 1973, p. 490) 
are 

(5.11) 

The general relationship between the velocity components in this system and the 
stream function is (Happel & Brenner 1973, 84.3) 

The velocity component v z  in t$e ,z direction may be obtained from the relationship 
between the unit vectors 2 and (c, I ) ,  namely 

(5.13) 

This is readily derived by observing that 2 = V'z', writing V' in the oblate spheroidal 
co-ordinate system ([,A), and using the second of equations (5.10). F'rom (5.13) we 
may establish the general relation 

connecting the velocity components in the two different co-ordinate systems. 
From (5.8) and (5.12) there follows 

(5.14) 

(5.15) 

The singular point (p' = 0, z' = 4) corresponds to the values ([ = 1, A = zo) with 
zo = &/c = h/c. Hence, from (5.14) and (5.15), at the singular point 

(5.16) 

This expression may be substituted into (8.7), and the parameter q -= Q eliminated 
via, (5.1) to obtain the additional drag-force wall correction. 

F+ Fa 3 
Fa pU4nac(l +zi)' 
-= -  (5.17) 

acting in the positive z' direction, opposite to the direction of motion U of the particle. 
The total force F* acting on the particle is F* = F + F+. Hence, with use of (4.16) 

we obtain the wall-effect correction factor 

(5.18) 

for the case of no net flow through the hole. This differs from the zero pressure- 
difference case (4.16), i.e. 

tr 
1' z- - 1 + V,(z,) Fm/8mpU + 0 (a/1)8, (5.19) 

by the intrusion of the additional term in (5.18). 
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That the force is distinctly different for the zero flow and zero pressure-difference 
cases is analogous to the comparable conclusion reached for the case of a thin circular 
wire translating parallel to itself at the centre of a concentric circular tube filled with 
viscous fluid (Brenner 1962b). In  that case too the force (per unit length of wire) was 
greater for the zero flow case than for the zero pressure-gradient case. In  the latter 
case the fluid is dragged along by the wire to which it adheres, resulting in a net flow 
of fluid. 

None of the qualitative conclusions of $4 pertaining to the wall correction factor 
F/Fm are altered upon replacing the latter by F*/F,. 

6. Transport of a neutrally buoyant sphere by a flow through a circular 
hole in a wall 

Of special interest in filtration applications is the case of a neutrally buoyant particle, 
subject to no net forces or torques, being carried along by a pressure-driven flow 
through a hole in a circular wall. To terms of dominant order in a/Z the translational 
velocity vector U, of the centre 0 of a neutrally buoyant spherical particle suspended 
in the undisturbed flow field (v+,p+) of $5 is readily determined from Faxen's law 
(Happel& Brenner 1973) to be 

(6.1) 

(To this same order in all the sphere rotates with the same angular velocity as does a 
fluid particle situated at 0.) 

U, = v$ + (a2/6p) (V'p+),+ O(U/Z)~ .  

Define the slip-velocity vector Us = U, - v$ of the sphere centre. This vector, 

Us = (a2/6p) (V'P+)~ + O ( U / Z ) ~  (6.2) 

therefore represents the velocity of the sphere centre relative to the surrounding fluid. 
From (5.15) the local fluid velocity vector for flow through the hole in the positive z 
direction at mean velocity 7 = q / m 2  is 

A 

v+ = x v i ,  
wherein 

3 7  
v;: = ,p[(A'+ 1) (h2+ 6 2 ) I - k  

Since the scalar v;\+ is non-negative, the direction of the vector v accords with the 
sketch in figure 4 depicting the direction of the unit vector 1. 

With p+ given by (5.9) the pressure gradient required in (6.2), 

V'p+ = chc @/a& fib, @/ah, 

is easily calylated. The sli -velocity vector may be resolved into the vector compo- 
nents Ui = XU! and Ui = Q Ui along and across the streamlines, respectively. In these 
expressions, we have the algebraically -signed scalars, 

and 
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f 

FIGURE 5. Migration of a spherical particle Bcross the streamlines E; = const. of the undisturbed 
flow. Net flow of fluid is in the positive z’ direction. The direction of migration across the stream- 
lines is shown for two mirror-image points, labelled + and -, corresponding, respectively, to 
the pair of VBlU0S ( IAl, c) and ( - lhl, E ; ) ,  situated at equal distances above and below the plane 
Z’ = 0 of the hole. 

in which (A,  6) are the co-ordinates of the sphere centre. By way of example, along the 
streamline 5 = 1 (the z axis) (6.5) reduces to 

while along the streamline y = 0 (i.e. along the solid portion of the wall), 

A negative value of Ui implies that the sphere moves more slowly along the streamline 
than does the fluid, and conversely. That (6.7) and (6.8) possess different algebraic 
signs demonstrates that, contrary to intuition regarding the retarding effects of the 
wall upon the particle motion, the sphere does not always lag behind the fluid along a 
streamline. Rather, there exist regions in which the particle velocity actually exceeds 
that of the fluid. The equation f(h, g) = 0 of the surface separating these two regions 
corresponds to the vanishing of the square-bracketed term in (6.5), namely 

A2 = (1  - 3 5 y  g2( 1 + 52). 

That Ui in (6.6) is non-zero indicates that the sphere migrates across the streamlines 
under the influence of the pressure gradient. The algebraic sign of Ui is positive for 
all z’ =- 0 and negative for all z‘ c 0, corresponding to the sketch in figure 5.  Thus, 
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upon approaching the hole the sphere is pushed away from the axis, while upon 
exiting from the hole the sphere is urged towards the axis.? Because of the symmetry 
of the flow about the plane z’ = 0 the time-averaged migration of such a particle is 
necessarily zero with respect to equivalent positions on streamlines above and below 
the hole. Such symmetry would, however, be destroyed by particleparticle inter- 
actions, Brownian motion etc. Consequently, the implications of such migratory, 
motions upon the flow of a suspension remains an open question, worthy of further 
study. 

This work was carried out while A.M. J. D. and M. E. 0”. were visiting the De- 
partment of Chemical Engineering, University of Rochester. Thanks are due to the 
Xerox Corporation for providing financial support in the form of a fellowship grant 
during their stay. 

Appendix. Stokeslet near an opening in a wall backed by a bowl-shaped 
rigid boundary 

Suppose now that, in contrast to the previous sections, the fluid region is 

O<r]<n+r]1, 5 2 0  (o<r] l<n)  

and consider the motion due to a stokeslet placed a t  p = 0, z = zo = cot $yo > 0. This 
is the same problem as previously considered in 9 4, except that the fluid beyond the 
wall opening is now limited by a fixed bowl-shaped boundary. Because there cannot 
be any net flux across the orifice y = n, it  is now helpful to work with a stream function 
$ in terms of which the velocity components are given by (4.1 1) .  $ must vanish at 
6 = 0 and r] = 0,n + vl and satisfy L-:$ = 0 but care is still required in using the 
solution form (2.5) because of the difficulty, mentioned after (2.8), of satisfying the 
boundary conditions. 

The solution $o for the case when the bowl opening is absent, leaving a solid plane 
(ql = 0), is given by 

$b0 = p2{[(z-zo)2+p”-+- [ ( Z + Z o ) 2 + p 2 ] - + }  

/om cash ~ ( n  - vo - 7) + 2 4 2  p2( cosh E - cos 7)’ sin avo sin 7, sin r] Ki(cosh 5) ds cosh sn 
after using (2.6), (2.8) to ensure that 

t That the direction of migration is different on the two sides of the hole may be seen directly 
from (5.9). Upon putting the arbitrary constant equal to zero we have that for a pair of mirror 
image points above and below the plane z’ = 0 ,  

Consequently, 

or, equivalently, 

Upon referring to figure 4, where the direction of increasing 5 is indicated by the unit vectors t, 
it is thus seen that, relative to the hole axis, the direction of the normal pressure gradients above 
and below the axis are such aa to cause the sphere to migrate in opposite directions. 
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The solution $ for 0 < 7, < n can then be written 

and 

where 

Fi(897) = A,(s) [sinh sr] cos 7 - 8 cosh sy sin 73 + B,(s) sinh q sin 7, 
FB(s, 7) = A,(s) [sinhS(n + 71-7) COB (n + 71 - 7) - s cosh ~ ( n  + 71-7) sin (n + 71-7)] 

+ B&8) sinhs(n + 71-7) sin (n + 71-7)- 
This construction of F, and F, ensures that $and its 7-derivative vanish at  7 = 0, n + 7,. 
It remains to determine the four functions A,(s),  A&), B,(s), B,(s) by requiring that $ 
and its first three 7-derivatives be continuous at r] = n. The equations obtained are 

A ,  sinh sn + A,(sinh 97, cos 7, - s cosh sy, sin 7,) + B, sinh q1 sin 7, = 0, 

B, sinh sn + A,( 1 + 82) sinh 87, sin 7, - B,(s cosh sy, sin 7, + sinh q, cos 7,) = 0, 

A,( 1 + s2) sinhsn - 2sB, cosh an + A,( 1 + s2) (s cosh 87, sin 7, + sinh q1 cos 7,) 
- B,[(s2 - 1) sinh 87, sin 7, + 2s cosh 87, cos 7,] = 2s( 1 + s2) sin qo sinh q0, 

~ ~ A , ( ~ + ~ ' ) C O S ~ S I T - ( ~ ~ ~ -  1)Bls inh~n 
-A,( 1 + s2) [ (sa - 1) sinhsy, sin 7, + 2s cosh 87, cos vl] 
+ B2[(93 - 39) cosh ST, sin 7, + ( 39, - 1) sinh 87, cos 7,] 

= 2492 + 1) (8 cosh sy, sinqo - sinh cos r0), 
and their solution is 

AA, =~sSsin~osin~~,coshs(n-r],) +sinhq,sinhs(n+r],) sinhs7,cosq0 
+ 8, sin ql(sin r0 cos 7, cosh 870 sinh m - sin 7, cos 7, sinh 8q0 cosh m) 

- s sinh ~ i n h  870 sin 71 cos (70 - 71) - s ~inh  8(7~ + 71) cash 870 Sinh 871 sin 70, 

-- "' - $2 sin2 7, sin qo sinh s(n - 7,) + .s sin 7, sin (7, - 7,) sinh qo sinh SIT 
1 +sa 

+ sin 7, sinh s(n + 71) sinh sy, sinh sr]o, 

- 8 sin ?,I, cos ?lo sinh 87, cosh s(n + 7,) + s cos 7, sin ro cosh qo sinh s(n + T,), 

ABZ = sinhsy0sinhs(n+7,)sin ( ~ ~ - 7 , )  +ss in~os in~ l s inhs (n+~ , -~o) ,  
(l+sa)sinhsn 

where A = s2 sin2 7, - sinh2 s(n + 7,). 

The limit y l + n  corresponds to the case where the radius of spherical bowl is 
infinite. In this situation, the flow is the superposition of two flows, one described by 
the solution given in 5 4, in which there is a net flow through the hole but zero pressure 
difference at infiriity , and the other described by the solution given in Happel & Brenner 
in which there is both a net flow through the hole and a net pressure difference at 
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infinity. The superposition of these two flows yields zero net flow through the hole 
with a non-zero pressure difference at infinity. 
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